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By John G. Lowry end Edward C. Polhamus
SUMMARY

A method is presented for estimating the 1ift due to flap deflection
at low angles of attack in incompressible flow. In this method provision
is made for the use of incremental section-lift data for estimating the
effectiveness of high-1ift flaps. The method is applicable to swept wings
of any aspect ratio or taper ratio. The present method differs from
other current methods mainly in its ease of application and its more
general application. Also included is a simplified method of estimating
the lift-curve slope throughout the subsonic speed range.

INTRODUCTTION

Although several methods are currently available for estimating the
effectiveness of flaps on wings of various plan forms (for example
refs. 1 to 4), they are generally restricted to small flap deflections;
and furthermore each method has certain reservations in its application.
For example reference 1, which 1s a semiempirical approach, is limited
to specific wing plan forms and flsp-chord ratios within the range of
experimental data used as well as to small flap deflections. In addition,
both references 1 and 2 may require considerable manipulation to obtain
values for a particular plan form.

The present method sttempts to combine the various existing methods
into a simple procedure that has more general applications than any one
of them alone. Section 1ift date are used as a basis of the calculatlons,
and this approach provides s means of estimating the increments of 1ift
due to high-lift flaps at large deflections.
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SYMBOLS

agspect ratio

section lift-curve slope, per radian
wing span

flap span

three-dimensional 1ift coefficlent

increment of three-dimensional 1ift coefficlent due to flap
deflection

three-dimensional 1lift-curve slope, per deg

éE-L-(constant a)

3B
wing chord
flap chord

two-dimensional section-lift coefficient
increment of section-lift coefficient due to flsp deflection
gsection lift-curve slope, per deg

flap-span factor (ratio of partial-span-flap lift coefficient

(ACL) partisl spsn
(ACT,) full span

to full-span-flap 1lift coefficient),

flap-chord factor (ratic of three-dimensional flasp-effectiveness
parsmeter to two-dimensional flap-effectivenese parameter),

(og) oy [(as)e,
Mach number
angle of attack, deg

£

three-dimensional flap-effectiveness parameter at constant 1lift
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(or,a)cz two~-dimensional flap-effectiveness parameter at constant 1ift

o} flap deflection normal to hinge line, deg

3! flep deflection streamwise, tan 3' = tan B cos iy, deg
A angle of sweep, deg

M sweep of hinge line, deg

Ae/2 sweep of half-chord line, deg

Ac/h sweep of quarter-chord line, deg

A taper ratio
Subscript:
eff effective

DEVELOPMENT OF METHOD

One reason for developing the present method is to provide a means
of estimating the 1lift increment of high-lift flaps. The method 1s there-
fore based on the use of a section 1ift increment Acjy, elther theoreti-

cal or experimental. The basic concept used in the method is
ACL, = C1q, (o) oL 5 Ky, (1)

Since it is desired to use either a theoretical or an experimental value
of Acj in the method and since

Acy = Clg, (CLS)CZ o]

multiplying the right-hand side of equation (1) by £el
cla (as)cl 5
gives
oL\ | (@) ¢
ACy, = Acz<-c—1-"i-> —Eixy, (2)
Za, (('1,5) c1
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c (a5)
where EE& is the aerodynamic induction factor, °L 15 the flap- ]
la (Gﬁ)cl .

(ACL) partial span

chord factor Kc, and Ky is the flap-span factor, (aCT) full
T span

Section~lift-Coefficlent Increments

The values of Ac; used may be either two-dimensional experimental

or theoretical values. For the purpose of this paper the section values

are obtained in a streamwise direction; and flap deflection in the stream
direction &' 1is used, since this plane is used for measuring the angle of
attack. Several investigators have proposed that the section data should

be referred normsl to some sweep line since thls concept would be in

agreement with that used in the simple sweep theory. For airfolls in the

range where the profile has a negligible effect on sectlon characteristics

(thin with small trailing-edge angle), the two methods give identical

results for constant-percent-chord flaps on relatively untapered wings. e
For highly tapered wings the present method somewhat simplifies the )
difficulties, with regard to flap-chord ratios in the vicinity of the

root and tip, that are encountered in the simple sweep theory. In view N
of this simplification and the fact that wings of current interest are

relatively thin, the use of section data relative to the airplane center

line is believed to be warranted. Since the values of Ac; are the basis

of the method, the final results will be only as accurate as the section
data; therefore use of experimental data is advisable when such are
available.

Aerodynamic Induction Factor

The aerodynamic induction factor CLm/CIa depends upon the three-
dimensional lift-curve slope Clg. A simplified method 1s presented in
the appendix for estimating cLu which includes the effects of sweep,

aspect ratio, and taper ratio. The appendix gives the following simple
expression for the incompressible lift-curve slope (eq. (A6)):

aph 1

N ———
x n cos Ag/fo
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Dividing both sides of this equation by ey, &lves the following expres-
sion for the aerodynamic-induction factor:

2];2'22 ao: —— (3)
N

CLy,
If both sides of equation (3) are divided by A, the expression %(;E%)

Lo,
A
cos Ac/e
relationship is shown in figure 1 for the case where a, = 2x. For esti-
mations of AC; normally required, this curve should provide the value

C
of EEE- if ay differs appreciably from 2x, the term should be com-
la,

is a unique function of for a given value of a , and the

puted from equation (3) by using the most appropriate value of ag
available. The choice of Ac /2 rather than the more commonly used

Ac/h as the sweep angle for use in equation (3) is discussed in detail

in the appendix. A nomograph for converting quarter-chord sweep angles
to half-chord sweep angles 1s gilven in figure 2 for wings of various
aspect ratio and taper ratio. An extension of the expression for Cr,

to account for compressibility is given in the appendix.

Flap-Span Effect

In order to apply the method to flaps other than full-span flaps,
it 1s necessary to obtain a span-effectiveness factor Ky where

_ (AC1)partial span
(ACT) full span

b

An expression for the span-effectiveness factor for inboard flaps has
been developed in reference L4 for wings having unswept trailing edges
and streamwise tips (rectengular in the viecinity of the trailing edge).
Equation (37) of reference 4 can be written as

2
Kp = 2 LES i (Ef-> + sin'l(:—f) (%)
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Examination of the results of references 5 and 6 and results obtained
by using the l0-step method of reference 7 indicated that more accurate

values can be obtained by using the empirical variations of Ky with T
E§§ for the three taper ratios 0, 0.5, and 1.0 given in figure 3 than

can be obtained from the single curve of equation (4). The following
table gives the varistion that can be expected when the curves of fig-
ure 3 are used.

Taper ratio Aspect ratio Variation in Ky
1.0 1.5<AaA<12 30.02
D 1.5<aA<12 +0.03
0 1.5<A< 6 #0.05

If greater accuracy 1s required than is indicated by the table the span
factor should be obtained by the methods of references 5 and 6.

For flaps other than inboard, the values are obtained by superposi-
tion of the flaps. Thls procedure 1s shown schematically in figure 4 s
for a midspan flap, and a similar method is used for outboard flsps. ’

Three-Dimensional Flap-Effectiveness Parameter

According to the assumptions of lifting-line theory, the section
values of the flap-effectiveness parameter (or,5)cz are independent of

aspect~ratio effects. Because

and because, according to reference 8, the lifting-surface-theory correc-
tion to the lifting-line value is grester for CLm that for CLB’ a

lifting-surface-theory correction to (aﬁ)cL is necessary. The results

of calculations for wings with a taper ratio of 1.0 and with flaps of

constant cg/c (ref. 4) were also used to obtain values of the factor
for wings of small aspect ratio. When the values from reference k4

and the limiting value for zero aspect ratio from reference 3 ((aﬁ)CL =1

for gll values of Cf/C) were used, curves were esteblished to provide
the values of K, as a function of aspect ratlo for a range of values
of (aﬁ)cz' Thege curves are presented in figure 5, together with a plot

showing the veriation of (a.g)cZ with cr/c. Because K, is dependent
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upon the type of chordwise loading, 1t might be expected to be more depend-
ent upon cf/c or upon the center of pressure than upon (uﬁ)c +» How=

ever, the data avallable at the present time indicate a better correlation
with (ms)cl.

Figure 6 presents a correlation of ag o with values obtained
L
from experimentsl Clm and CL8 date from reference 9 for wings having
a constant-percent-chord flsp with a value of (aa)cZ = 0.60. The agree-

ment between the estimated and the experimental variation with aspect
ratio is very good.

When experimental values of Ac; are used in order to estimate
ACy, for smsll deflections, the value of (or,s)c1 used in determining

Ke can be obtained from experimental values or from the inset chart in

figure 5. When large flap deflections are used and separation occurs
over the flap, the values of (a,s)cZ cen be obtained from

_ 57.3 4y (5)

cy 8,%
If theoretical flap effectiveness is obtained by the use of boundary-
layer control, the values of (aﬁ)cz from the inset chart in figure 5

are used regardless of the value of 3.

The effectiveness of flaps that have variable values of (oua)cZ

across the span is found by mechanical integration across the flap span
of the following equation:

Kb, outboard
L [ (38) g, & (6)

al =
l? a)c{]eff Kb,outboard - Xb,inboard Kb, inboard
L )

where the values of Ky, are obtained from figure 3. When the values of
(a,s)cz are plotted against the values of K, for all points along the

flap span, then the area under the curve 1s equal to Ky E“S)cileff'

For most configurations, however, an average value of (a@)cz will

provide sufficient accuracy in the estimation of AC.
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For convenience, an experimental correlation of (aa)cz for various

flap chords is given in figure 7 for deflections of #10°. The experimen-
tal data were obtained from airfolls having trailing-edge angles of
approximately 10C and includes both gap open and gap sealed conditions.

Experimental Verification

Since the usefulness of any method of estimating lift increments
depends on the agreement obtained with actual results, the values of
ACp, obtained by the present method are compared with some experimental

results in figure 8. The results of ACp, ere for the conditions of low

speed (M <0.4) at a = 0°. The results at low flap deflections were
obtained on unswept wings varying in aspect ratios from 1 to 6 and having
flap-chord ratios varying from 0.10 to 0.40. The values of (aa)cz used

for the estimation were obtailned from figure 7. A few comparisons are

shown for double-slotted flaps deflected approximately 60° on both a

swept wing and e delte wing. The section 1ift increments Acy were

obtained from experimental itwo-dimensional data. It is apparent that .
the method, at least for the configuration shown in figure 8, 1s accurate '
for predicting the 1lift increment due to flap deflection.

CONCLUDING REMARKS

A simplified method is presented to provide for the estimation of
the 1ift due to flap deflection on swept wings in incompressible flow
from section data. A comparison of the experimental finite-span 1ift
increments with those estimated by this method provides a satisfactory
verification of the method.

Lengley Aeronautical Lseboratory,

National Advisory Committee for Aeronautics,
Langley Field, Va., October 10, 1956.
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APPENDIX

SIMPLIFIED METHOD OF ESTIMATING CLa THROUGHOUT

THE SUBSONIC SPEED RANGE

The purpose of this appendix is to describe simple but accurate
methods of estimating the effects of aspect ratio, sweep, taper ratio,
and Mach number on the subsonic lift-curve slope.

Effect of Sweep, Aspect Ratio, and Mach Number

A very simple but accurate equation for the subsonic lift-curve
slope is (for ag = 2n)

CLy, = 27h (=1 3) (A1)

2 + V/L + (coﬁ A)2 - (AM)2

This equation, which is a modification of the Helmbold equation (ref. 10)

to account for sweep and Mach number, was derived by the junior author,

who originally presented it at a seminar (Chio State University - Wright
Patterson Air Force Base Graduste Center) in 1950. This expression is
somewhat more accurate at low aspect ratios than the method presented in
reference 1l. An expression which gilves identical results is derived in
reference 12,

Equation (Al) can be derived simply by correcting the section lift-
curve slope in Helmbold's equation (ref. 10) for the effect of sweep
(ao cos A) and applying the well-known three-dimensional Prandtl-Glauert
transformation. Correcting Helumbold's expression for the effect of sweep
gives

- oA [1
(Laheo _%9.,,\/( -Aj +(ao)2\57-3) (42)
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Applying the three-dimensional Prandtl-Glauert transformstion te account
Tor compressiblity gives

CIU, { & (A3)
( \/ 201 . ) (30)2\57 3)

cos? AM

where Ay 1s defined as
tan A

Vi-.w
By trigonometric substitution it can be shown that

M=A2(1_M2) (1+ 1 o1 )=( A )-(AM)2

cos? Ay cos2 A(L - M2) 1.-M cos A ()
Al

tan Ay =

and by substitution of equation (A4) in equation (A3)

(Cra)u = o (5,} 3) (45)

2o ¢ () - o

This equation differs from that for the incompressible case (eq. (A2))

by only the term (AM)E. The same result can be obtained by correcting
the section lift-curve slope a, in equation (A2) for compressibility
by using the Mach number normal to the leading edge. Substituting

20

\/l - M cos? A

for a, in equation (A2) and rearranging results in

- A 1
(O ) = (57- 3)
_]:+/A2(1-D/FCO§2A)+_1-§
" a.°2 cos? A %

which reduces to equation (A5).
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Effect of Taper Ratio

It will be noted that no term for wing-taper-ratio effects appears
in equation (Al). The effects of taper ratio, however, can be essentially
eliminated if the half-chord line is used for the sweep reference line.
This fact is illustrated in figure 9 where the incompressible lift-curve
slope, as determined by the Welssinger 15-point method (refs. 5 and 6),
is plotted as a function of the sweep of the quarter-chord line and the
sweep of the half-chord line for various taper ratios. The results for
an aspect ratio of 1.5 are presented in figure 9(a), and those for an
aspect ratio of 3.0 are presented in figure 9(b). The results indicate
that, when the usual procedure of referencing the sweep angle to the
quarter-chord line is used, the effects of taper ratio on the 1lift-
curve slope are rather large. However, when the half-chord line is used,
the effect of taper is eliminated to a large extent. The fact that
rether large effects of taper ratio occur for wings having the same sweep
of the quarter-chord line (see left part of figs. 9(a) and 9(b)) can be
explained to some extent at least by the reversibility theorem (ref. 13),
which states that the lift-curve slope of a wing is the same in forward
as in reversed flow. This theorem implies that if the sweep 1s referenced
to a line other than the half-chord line, only the lift-curve slopes of
the untapered wings (A = 1.0) will be symmetrical zbout zero sweep. It
therefore is impossible for the lift~-curve slopes of tapered wings to
coincide with those of untspered wings throughout the sweep range, and
at least an apparent taper-ratio effect must exist. The reversibility
theorem itself, of course, does not exclude an actual taper-ratio effect;
however, figure 9 shows that when the curves are made symmetrical by use
of the half-chord line for the sweep reference, relatively little dis-
placement due to taper ratio occurs, Also, in the modified 1ifting-line
methods such as the Weissinger method, taper effects are dependent upon
the sweep and the relative position of both the quarter-chord line
(bound-vortex location) and the three-quarter-chord line (boundary-
condition location). This fact suggests the possibility that wings
having the same sweep of the intermediate or half-chord line might be
less effected by taper than those having some other common sweep line.

Accuracy of Method

The preceding results indicate that equation (A2) may be applicable
to all plan forms, providing the sweep of the hslf-chord line is used.
Use of Ap/p results in the following expression for the lift-curve

slope:

(Cte) oo = — (571.3) (+6)
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Dividing both sides by A and letting a, equal 2x gives the
following expression:

(OLo)yeo _ 2 ( 1 )

A —— \57.3
2+/]+ 'l'(c—os—Ac—/z-)

which indlecates that EEE is a unique function of — A . In order
A cos Ac/2
that the accuracy of the method may be evaluated, equation (A7) is com-
pared with available lifting-surface solutions (refs. 1k to 18) in fig-
ure 10. The Swanson method used for the 60° sweptback elliptical wing
is described in reference 8. The lifting-surface solutions presented
are probably the most accurate solutions availeble, and it will be noted
that they cover & wide range of plan forms. The fact, therefore, that
the lifting-surface solutions are in excellent agreement with equsa-~

(A7)

)
tion (A7) appears to indicste both that —%9 is, for all practical pur-

poses, a unique function of and thet equation (A7) is suffi-

A
cos Ac/2

ciently accurate.

Design Charts

For the convenient determination of the lift-curve slope, some
design charts are presented. TFigure 1l presents the variation of

o gitn A
A cos Ac/2
rection of these results for the effect of Mach number, correction fac-
tors are presented In figure 12 as a function of the half-chord sweep
for vaerious aspect ratios at Mach numbers of 0.40, 0.60, 0.80, 0.90, and
0.95. Since sweep angles are quite often referred to the quarter-chord
line, a nomograph for converting from quarter-chord sweeps to half-chord

sweeps 1s presented in figure 2.

for incompressible flow. For the convenient cor-
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Figure 12.- Ratio of compressible to incompressible 1lift

for subsonic speeds.
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Figure 12.- Continued.
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Figure 12.- Concluded.
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